Différences entre versions de « A4988 »

De MCHobby - Wiki
Sauter à la navigation Sauter à la recherche
Ligne 91 : Ligne 91 :
 
La tension d'alimentation moteur est comprise entre 8 et 35 V qui doit être connecté entre les broches VMOT et GND. Cette alimentation devrait être accompagnée d'une capacité de découplage proche de la carte, et devrait être capable de délivrer le courant attendu (des pointes jusqu'à 4 A pour l'alimentation moteur.
 
La tension d'alimentation moteur est comprise entre 8 et 35 V qui doit être connecté entre les broches VMOT et GND. Cette alimentation devrait être accompagnée d'une capacité de découplage proche de la carte, et devrait être capable de délivrer le courant attendu (des pointes jusqu'à 4 A pour l'alimentation moteur.
  
[[Fichier:A4988-decouplage.jpg]]
+
[[Fichier:A4988-decouplage.jpg|320px]]
  
{{ambox-stop|text=Warning: This carrier board uses low-ESR ceramic capacitors, which makes it susceptible to destructive LC voltage spikes, especially when using power leads longer than a few inches. Under the right conditions, these spikes can exceed the 35 V maximum voltage rating for the A4988 and permanently damage the board, even when the motor supply voltage is as low as 12 V. One way to protect the driver from such spikes is to put a large (at least 47 µF) electrolytic capacitor across motor power (VMOT) and ground somewhere close to the board.}}
+
{{traduction}}
 +
 
 +
{{ambox-stop|text=Cette carte utilise des capacités céramiques à faire résistance série équivalente ([http://www.jmax-hardware.com/forum/index.php?topic=5171.0;wap2 low-ESR]),ce qui la sensible aux destructions par les pointes de surtensions induites par les circuits LC, plus spécialement sur vous utilisez des cables d'alimentations d'une longueur supérieure à quelques centimètres. Sous de mauvaises conditions, ces  these spikes can exceed the 35 V maximum voltage rating for the A4988 and permanently damage the board, even when the motor supply voltage is as low as 12 V. One way to protect the driver from such spikes is to put a large (at least 47 µF) electrolytic capacitor across motor power (VMOT) and ground somewhere close to the board.}}
  
 
== Branchement moteur ==
 
== Branchement moteur ==

Version du 3 novembre 2013 à 14:48


MCHobby investit du temps et de l'argent dans la réalisation de traduction et/ou documentation. C'est un travail long et fastidieux réalisé dans l'esprit Open-Source... donc gratuit et librement accessible.
SI vous aimez nos traductions et documentations ALORS aidez nous à en produire plus en achetant vos produits chez MCHobby.


Présentation

Cette carte breakout supporte une pilote Microstepping Allegro A4988 (DMOS) incluant une protection contre les sur-courants (overcurrent). C'est le contrôleur de moteur pas-à-pas que l'on retrouve sur les cartes de commande des imprimantes 3D comme OrdBot Hadron.

Ce contrôleur permet de contrôler des moteurs pas-à-pas bipolaires en micro-stepping avec un maximum de 2 ampères par bobine (attention aux conditions de dissipation de chaleur!!!).

Voici quelques caractéristiques clés de ce breakout:

  • Interface de contrôle de pas et de direction simplissime.
  • 5 résolutions différentes de pas:
    • full-step : Pas complet
    • half-step : 1/2 pas
    • quarter-step : 1/4 de pas
    • eighth-step : 1/8 ième de pas
    • sixteenth-step : 1/16 ième de pas
  • Contrôle en courant ajustable - un potentiomètre permet de fixer le courant maximum à l'aide d'un potentiomètre. Cela permet d'utiliser une tension supérieure à celle recommandée par le moteur (puisque le courant est limité) et permet ainsi d'atteindre un débit de pas plus élevé (et donc une vitesse plus élevée)
  • Une commande de hachage intelligente qui sélectionne automatiquement le bon mode de décroissance de courant (fast decay = baisse/chute rapide du courant OU slow decay = chute lente)
  • Protection (arrêt) en cas de surchauffe, sous tension, surcharge/sur-courant/court-circuit. Utile en cas de surcharge/blocage moteur (car le courant va monté en flèche, ce qui doit provoquer la mise en protection).

Détail techniques

Pensez à prendre connaissance de la fiche technique du A4988. En effet, s'il est capable de piloter un courant important, cela ne se fait pas dans n'importe quel condition, il fait être attentif à la dissipation de chaleur.

  • Tension de fonctionnement minimum : 8 V
  • Tension maximale de fonctionnement : 35 V
  • Courant par phase (en continu) : 1,2 Amp
  • Courant maximum par phase : 2.3 Amp
  • Logique de contrôle
    • Tension minimale: 3 V
    • Tension Maximale : 5.5
  • Résolution Microstep: Pas complet, 1/2, 1/4, 1/8 et 1/16 de pas
  • Protection contre inversion de tension: NON 

Brochage

A4988-PinOut.jpg

  • Enable: Logique Inversée, permet d'activer ou désactivé le moteur. Etat Haut=High=Moteur actif... et axe bloqué entre les pas. Etat bas=Low=Axe totalement libre
  • MS1, MS2, MS3: permet de sélectionner la configuration Step/MicroStep. Ces broches disposent de résistances Pull-Down ramenant le potentiel à 0v lorsque rien n'est connecté sur ces broches. Voir la section ci-dessous pour plus d'information.
  • Reset: Logique inversée. Permet de faire une réinitialisation du module. Généralement connecté sur la broche "sleep".
  • Sleep: Logique inversée. Généralement connecté sur la broche "Reset" du module.
  • Step: Envoyer un signal d'horloge (Niveau Haut puis Niveau bas, High puis Low) pour avancer le moteur d'un pas.
  • DIR: Permet d'indiquer la direction de rotation du moteur. Etat Haut=High pour tourner dans un sens, Etat bas=Low pour tourner dans l'autre sens.
  • VMot: Tension d'alimentation du moteur. Habituellement 12V pour les moteurs pas à pas. Tension entre 8 et 12v.
  • GND: Sous "VMOT", masse pour l'alimentation moteur. Habituellement mise en commun avec la masse de logique de commande (celle sous "VDD").
  • 2B 2A: Première bobine du moteur pas à pas bipolaire (voir exemple ci-dessous)
  • 1A 1B: Deuxième bobine du moteur pas à pas bipolaire (voir exemple ci-dessous)
  • VDD: Alimentation de la logique de commande entre 3 et 5.5v. Habituellement 5V.
  • GND: Sous "VDD", masse de la logique de commande. Souvent mise en commun avec la masse d'alimentation du moteur.

Entrées de contrôle

Chaque impulsion sur l'entrée STEP correspond à un microstep du moteur pas-à-pas dans la direction sélectionnée sur la broche DIR.

Notez que les broches STEP et DIR ne disposent pas de résistances pull-down ou pull-up interne. Vous devez contrôler les deux états Haut (High) et bas (Low) avec votre application. La tension sur ces broches ne peut pas être flottante. Ce qui n'est pas un problème pour les plateformes Arduino :-)

Si vous ne devez faire tourner le moteur que dans un seul sens, vous pouvez placer la broche DIR directement sur VCC ou GND. Le circuit dispose de 3 entrées différentes pour contôler son étage de puissance: RST (Reset), SLP (sleep) et EN (enabled). Voyez la fiche technique pour plus d'information sur ces états.

Notez que la broche RST (reset) est flottante; Si vous ne comptez pas utiliser cette broche, vous pouvez la connecter sur la broche SLP (sleep) adjacente pour placer RST au niveau logique haut (high) et activer la carte.

Configuration Step/MicroStepping

La configuration se fait à l'aide des broches MS1, MS2 et MS3.

Les moteurs pas-à-pas dispose de leur propre spécification physique de "pas" (step specification en anglais) connu comme un "pas complet" (full step en anglais). Un moteur 1.8° ou 200 pas par révolution fait parti des moteurs les plus répandus. Un pilote microstepping tel que le A4988 permet d'obtenir une plus grande résolution en autorisant des positions intermédiaires dans un pas. Cela est rendu possible en modulant intelligemment la quantité de courant dans les bobines du moteur pas-à-pas. Par exemple, piloter un moteur en mode "1/4 de pas" permet d'obtenir 800 microsteps (micro-pas) sur un moteur prévu pour 200 pas ar révolution et cela en utilisant 4 niveau de courants différents pour chacun des microsteps.

La résolution (la taille du pas) est sélectionné à l'aide des entrées MS1, MS2 et MS3. Grâce à eux, vous disposez de 5 résolutions différentes reprisent dans la table ci-dessous.

  • MS1 et MS3 dispose d'une résistance pull-down interne de 100kΩ.
    Une résistance pull-down signifie que si vous ne placer pas le potentiel de ces broches au niveau logique haut=high=VDD (la tension choisie pour la la logique de commande) alors elle seront automatiquement ramenée au niveau logique bas=Low.
  • MS2 dispose d'une résistance pull-down de 50kΩ.

Si vous ne raccordez aucune de ces broches MS1, MS2 et MS3 alors votre breakout A4988 fonctionnera en mode "pas complet" (full step). Pour que le microstepping fonctionne correctement, il faut que la limite de courant soit assez bas (voir ci-dessous) de façon à ne pas activer la protection en sur-courant. Sinon, les niveaux de courant intermédiaire ne seront pas correctement maintenu et ne moteur pourrait sauter des microsteps.

MS1 MS2 MS3 Résolution Microstepping
Low Low Low Pas complet (full step)
High Low Low 1/2 pas
Low High Low 1/4 de pas
High High Low 1/8 ième de pas
High High High 1/16 ième de pas

Les sources d'alimentation

Le pilote requière une tension d'alimentation entre 3 et 5.5 V pour la logique qui doit être connecté entre les broches VDD et GND (adjacente).

La tension d'alimentation moteur est comprise entre 8 et 35 V qui doit être connecté entre les broches VMOT et GND. Cette alimentation devrait être accompagnée d'une capacité de découplage proche de la carte, et devrait être capable de délivrer le courant attendu (des pointes jusqu'à 4 A pour l'alimentation moteur.

A4988-decouplage.jpg

Branchement moteur

D'une façon générale, changer le câblage en cours de fonctionnement sera la source de problèmes.

Limiter le courant

To achieve high step rates, the motor supply is typically much higher than would be permissible without active current limiting. For instance, a typical stepper motor might have a maximum current rating of 1 A with a 5Ω coil resistance, which would indicate a maximum motor supply of 5 V. Using such a motor with 12 V would allow higher step rates, but the current must actively be limited to under 1 A to prevent damage to the motor.

The A4988 supports such active current limiting, and the trimmer potentiometer on the board can be used to set the current limit. One way to set the current limit is to put the driver into full-step mode and to measure the current running through a single motor coil without clocking the STEP input. The measured current will be 0.7 times the current limit (since both coils are always on and limited to 70% of the current limit setting in full-step mode). Please note that changing the logic voltage, Vdd, to a different value will change the current limit setting since the voltage on the “ref” pin is a function of Vdd.

Another way to set the current limit is to measure the voltage on the “ref” pin and to calculate the resulting current limit (the current sense resistors are 0.05Ω). The ref pin voltage is accessible on a via that is circled on the bottom silkscreen of the circuit board. The current limit relates to the reference voltage as follows:

Current Limit = VREF × 2.5

So, for example, if the reference voltage is 0.3 V, the current limit is 0.75 A. As mentioned above, in full step mode, the current through the coils is limited to 70% of the current limit, so to get a full-step coil current of 1 A, the current limit should be 1 A/0.7=1.4 A, which corresponds to a VREF of 1.4 A/2.5=0.56 V. See the A4988 datasheet for more information.

Dissipation de chaleur

The A4988 driver IC has a maximum current rating of 2 A per coil, but the actual current you can deliver depends on how well you can keep the IC cool. The carrier’s printed circuit board is designed to draw heat out of the IC, but to supply more than approximately 1 A per coil, a heat sink or other cooling method is required.

Please note that measuring the current draw at the power supply will generally not provide an accurate measure of the coil current. Since the input voltage to the driver can be significantly higher than the coil voltage, the measured current on the power supply can be quite a bit lower than the coil current (the driver and coil basically act like a switching step-down power supply). Also, if the supply voltage is very high compared to what the motor needs to achieve the set current, the duty cycle will be very low, which also leads to significant differences between average and RMS currents.

Où acheter