Modifications

Sauter à la navigation Sauter à la recherche
11 octets ajoutés ,  19 avril 2015 à 12:00
Ligne 111 : Ligne 111 :  
So far we have been using standard servos that move to a specific angle and stay at that angle. These servo motors are useful to create joints of a robot, or things like pan-tilt mechanisms. Internally, the motor has a variable resistor (potentiometer) which measures the current angle and applies power to the motor proportional to how far it is from the desired angle. The desired angle is set by the width of a high-pulse on the servo signal wire. A pulse width of 1500 microsecond corresponds to the centre position (0 degrees). The pulses are sent at 50 Hz, ie 50 pulses per second.
 
So far we have been using standard servos that move to a specific angle and stay at that angle. These servo motors are useful to create joints of a robot, or things like pan-tilt mechanisms. Internally, the motor has a variable resistor (potentiometer) which measures the current angle and applies power to the motor proportional to how far it is from the desired angle. The desired angle is set by the width of a high-pulse on the servo signal wire. A pulse width of 1500 microsecond corresponds to the centre position (0 degrees). The pulses are sent at 50 Hz, ie 50 pulses per second.
   −
You can also get continuous rotation servo motors which turn continuously clockwise or counterclockwise. The direction and speed of rotation is set by the pulse width on the signal wire. A pulse width of 1500 microseconds corresponds to a stopped motor. A pulse width smaller or larger than this means rotate one way or the other, at a given speed.
+
You can also get {{pl|224|continuous rotation servo motors}} which turn continuously clockwise or counterclockwise. The direction and speed of rotation is set by the pulse width on the signal wire. A pulse width of 1500 microseconds corresponds to a stopped motor. A pulse width smaller or larger than this means rotate one way or the other, at a given speed.
    
On the pyboard, the servo object for a continuous rotation motor is the same as before. In fact, using {{fname|angle}} you can set the speed. But to make it easier to understand what is intended, there is another method called {{fname|speed}} which sets the speed:
 
On the pyboard, the servo object for a continuous rotation motor is the same as before. In fact, using {{fname|angle}} you can set the speed. But to make it easier to understand what is intended, there is another method called {{fname|speed}} which sets the speed:
29 837

modifications

Menu de navigation