Différences entre versions de « Pololu-Zumo-Shield-Arduino-suiveur-de-ligne »

De MCHobby - Wiki
Sauter à la navigation Sauter à la recherche
Ligne 19 : Ligne 19 :
 
<syntaxhighlight lang="c">
 
<syntaxhighlight lang="c">
 
/*
 
/*
  * Demo line-following code for the Pololu Zumo Robot
+
  * Code de démo suiveur de ligne (line-following) pour le Robot Zumo de Polulo
 
  *
 
  *
  * This code will follow a black line on a white background, using a
+
  * Ce code suivra une ligne noire sur un fond blan et utilise un
  * PID-based algorithmIt works decently on courses with smooth, 6"
+
  * algorithme de type PID.  Il fonctionne correctement sur des
  * radius curves and has been tested with Zumos using 30:1 HP and
+
  * circuits avec des courbes ayant un rayon de 15 cm.
  * 75:1 HP motorsModifications might be required for it to work
+
* L'algorithme à été testé sur Zumo avec des moteurs 30:1 HP et
  * well on different courses or with different motors.
+
  * 75:1 HP.  Pourrait demander des modifications pour fonctionner
 +
  * sur d'autres circuits ou avec d'autres moteurs.
 
  *
 
  *
 
  * http://www.pololu.com/catalog/product/2506
 
  * http://www.pololu.com/catalog/product/2506
 
  * http://www.pololu.com
 
  * http://www.pololu.com
 
  * http://forum.pololu.com
 
  * http://forum.pololu.com
 +
*
 +
* Zumo également disponible chez MC Hobby (le traducteur du tutoriel)
 +
*
 +
* http://shop.mchobby.be/product.php?id_product=448
 
  */
 
  */
  
Ligne 45 : Ligne 50 :
 
int lastError = 0;
 
int lastError = 0;
  
// This is the maximum speed the motors will be allowed to turn.
+
// Ceci est la vitesse de rotation maximale des moteurs.
// (400 lets the motors go at top speed; decrease to impose a speed limit)
+
// (400 permet au moteur d'aller a vitesse max; diminuer la valeur pour imposer une vitesse limite)
 
const int MAX_SPEED = 400;
 
const int MAX_SPEED = 400;
  

Version du 19 avril 2017 à 18:53

Ce croquis/sketch montre comment le programmer le Zumo et son réseau de senseur lien pololu pour suivre des lignes et participer à des courses de suivit de ligne (également appelé "Line Tracker" en anglais). Une fois les bibliothèques du shield Zumo installées, vous pouvez ouvrir l'exemple depuis le point de menu Fichier > Exemples > ZumoExamples > LineFollower.

Pololu-Zumo-Shield-Arduino-suiveur-de-ligne-00.jpg

Exemple de circuit "suiveur de ligne"

Cliquer l'image pour l'agrandir

Vous pouvez également consulter cette vidéo YouTube de Pololu utilisant le 3Pi de Pololu mais dont le principe est identique avec notre Zumo.

Cette implémentation du suiveur de ligne est très similaire à l'exemple de Pololu pour le robot 3pi lien pololu. Les concepts et stratégies mises en oeuvre sont expliquées en détails dans la section 7 du utilisateur du robot 3pi (pololu, anglais).

Des exemples de compétitions

Si le sujet vous captive, vous trouverez de nombreux exemple sur YouTube en faisant une recherche sur "line following race".

Le code

Voici une copie de l'exemple avec traduction des commentaires pour vous aider à mieux comprendre le fonctionnement du croquis/sketch

Nous recommandons de toujours charger l'exemple depuis les codes d'exemples de la bibliothèque Zumo.

/*
 * Code de démo suiveur de ligne (line-following) pour le Robot Zumo de Polulo
 *
 * Ce code suivra une ligne noire sur un fond blan et utilise un 
 * algorithme de type PID.  Il fonctionne correctement sur des 
 * circuits avec des courbes ayant un rayon de 15 cm.
 * L'algorithme à été testé sur Zumo avec des moteurs 30:1 HP et
 * 75:1 HP.  Pourrait demander des modifications pour fonctionner
 * sur d'autres circuits ou avec d'autres moteurs.
 *
 * http://www.pololu.com/catalog/product/2506
 * http://www.pololu.com
 * http://forum.pololu.com
 *
 * Zumo également disponible chez MC Hobby (le traducteur du tutoriel)
 *
 * http://shop.mchobby.be/product.php?id_product=448
 */

#include <QTRSensors.h>
#include <ZumoReflectanceSensorArray.h>
#include <ZumoMotors.h>
#include <ZumoBuzzer.h>
#include <Pushbutton.h>


ZumoBuzzer buzzer;
ZumoReflectanceSensorArray reflectanceSensors;
ZumoMotors motors;
Pushbutton button(ZUMO_BUTTON);
int lastError = 0;

// Ceci est la vitesse de rotation maximale des moteurs.
// (400 permet au moteur d'aller a vitesse max; diminuer la valeur pour imposer une vitesse limite)
const int MAX_SPEED = 400;


void setup()
{
  // Play a little welcome song
  buzzer.play(">g32>>c32");

  // Initialize the reflectance sensors module
  reflectanceSensors.init();

  // Wait for the user button to be pressed and released
  button.waitForButton();

  // Turn on LED to indicate we are in calibration mode
  pinMode(13, OUTPUT);
  digitalWrite(13, HIGH);

  // Wait 1 second and then begin automatic sensor calibration
  // by rotating in place to sweep the sensors over the line
  delay(1000);
  int i;
  for(i = 0; i < 80; i++)
  {
    if ((i > 10 && i <= 30) || (i > 50 && i <= 70))
      motors.setSpeeds(-200, 200);
    else
      motors.setSpeeds(200, -200);
    reflectanceSensors.calibrate();

    // Since our counter runs to 80, the total delay will be
    // 80*20 = 1600 ms.
    delay(20);
  }
  motors.setSpeeds(0,0);

  // Turn off LED to indicate we are through with calibration
  digitalWrite(13, LOW);
  buzzer.play(">g32>>c32");

  // Wait for the user button to be pressed and released
  button.waitForButton();

  // Play music and wait for it to finish before we start driving.
  buzzer.play("L16 cdegreg4");
  while(buzzer.isPlaying());
}

void loop()
{
  unsigned int sensors[6];

  // Get the position of the line.  Note that we *must* provide the "sensors"
  // argument to readLine() here, even though we are not interested in the
  // individual sensor readings
  int position = reflectanceSensors.readLine(sensors);

  // Our "error" is how far we are away from the center of the line, which
  // corresponds to position 2500.
  int error = position - 2500;

  // Get motor speed difference using proportional and derivative PID terms
  // (the integral term is generally not very useful for line following).
  // Here we are using a proportional constant of 1/4 and a derivative
  // constant of 6, which should work decently for many Zumo motor choices.
  // You probably want to use trial and error to tune these constants for
  // your particular Zumo and line course.
  int speedDifference = error / 4 + 6 * (error - lastError);

  lastError = error;

  // Get individual motor speeds.  The sign of speedDifference
  // determines if the robot turns left or right.
  int m1Speed = MAX_SPEED + speedDifference;
  int m2Speed = MAX_SPEED - speedDifference;

  // Here we constrain our motor speeds to be between 0 and MAX_SPEED.
  // Generally speaking, one motor will always be turning at MAX_SPEED
  // and the other will be at MAX_SPEED-|speedDifference| if that is positive,
  // else it will be stationary.  For some applications, you might want to
  // allow the motor speed to go negative so that it can spin in reverse.
  if (m1Speed < 0)
    m1Speed = 0;
  if (m2Speed < 0)
    m2Speed = 0;
  if (m1Speed > MAX_SPEED)
    m1Speed = MAX_SPEED;
  if (m2Speed > MAX_SPEED)
    m2Speed = MAX_SPEED;

  motors.setSpeeds(m1Speed, m2Speed);
}

Basé sur "Zumo Shield for Arduino" de Pololu (www.pololu.com/docs/0J57) - Traduit en Français par shop.mchobby.be CC-BY-SA pour la traduction
Toute copie doit contenir ce crédit, lien vers cette page et la section "crédit de traduction". Traduit avec l'autorisation expresse de Pololu (www.pololu.com)

Based on "Zumo Shield for Arduino" from Pololu (www.pololu.com/docs/0J57) - Translated to French by shop.mchobby.be CC-BY-SA for the translation
Copies must includes this credit, link to this page and the section "crédit de traduction" (translation credit). Translated with the Pololu's authorization (www.pololu.com)